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Abstract. In this paper, we describe transformation recipes, which pro-
vide a high-level interface to the code transformation and code generation
capability of a compiler. These recipes can be generated by compiler deci-
sion algorithms and savvy software developers. This interface is part of an
auto-tuning framework that explores a set of different implementations of
the same computation and automatically selects the implementation that
best meets a set of optimization criteria. Along with the original com-
putation, a transformation recipe specifies a range of implementations of
the computation resulting from composing a set of high-level code trans-
formations. In our system, an underlying polyhedral framework coupled
with transformation algorithms takes this set of transformations, com-
poses them and automatically generates correct code. We first describe
an abstract interface for transformation recipes, which we propose to fa-
cilitate interoperability with other transformation frameworks. We then
focus on the specific transformation recipe interface used in our compiler
and present performance results on its application to kernel and library
tuning and tuning of key computations in high-end applications. We also
show how this framework can be used to generate and auto-tune parallel
OpenMP or CUDA code from a high-level specification.

1 Introduction

The compiler research community has developed a significant body of work in
code transformation techniques that improve performance by optimizing for spe-
cific architectural features, especially by increasing parallelism or better man-
aging the memory hierarchy [46, 44, 45, 38, 39, 8, 28, 23, 37, 33, 5, 25, 26, 18]. How-
ever, in our work with application and library developers that are seeking very
high levels of performance, we find that their interface to the commercial com-
piler, mostly through compile-time flags, is a stumbling block to using the code
transformation capability. Many such programmers continue to manually apply
the very same code transformations that their compiler can apply automatically,
not only increasing programming time but also producing low-level architecture-
specific code that is difficult to port and maintain.

A well-recognized challenge to the effectiveness of compiler optimizations
targeting architectural features is making complex tradeoffs between different
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optimizations, or identifying optimal values of optimization parameters such as
unroll factors or loop tile sizes. Without sufficient knowledge of the execution
environment, which is extremely difficult to model statically, compilers often
make suboptimal choices, sometimes even degrading performance. To address
this limitation, a recent body of work on auto-tuning uses empirical techniques to
execute code segments in representative execution environments to determine the
best-performing optimization sequence and parameter values [21, 22, 43, 27, 35,
31, 32, 36, 29]. A compiler to support auto-tuning must have a different structure
than a traditional compiler, as it must expose a set of different variants of a
computation, with parameterized optimization variables. These parameterized
variants are then evaluated empirically by an experiments engine that identifies
the best implementation of the computation. In our compiler, we also must
support collaborative auto-tuning, so that application developers can access and
guide the auto-tuning framework.

As a separate concern, some but not all of the compiler community’s transfor-
mation research has migrated into practice in widely-used or commercial compil-
ers. There are some notable success stories, such as the Graphite project for Gnu
compilers [30], and specific optimizations such as software pipelining and loop
tiling, but it is difficult to integrate compiler decision algorithms into commercial
compilers without a complete reimplementation. We make the observation that
the structure of today’s compilers makes it difficult to migrate new ideas into
practice; retargeting optimizations and decision algorithms for a new compiler
infrastructure is often simply infeasible. Every commonly-used compiler infras-
tructure has strengths and weaknesses as well as years of development that are
costly to repeat; converging on one or a small subset of compiler infrastructures
is therefore unrealistic. As an alternative viewpoint, could we possibly compose
a compiler tool from the best capabilities of a collection of systems?

The focal point of this paper is a high-level interface for describing transfor-
mation recipes, as this interface is the mechanism by which the compiler organi-
zation meets the three driving principles: supporting auto-tuning, serving as an
application-developer interface (in addition to a compiler interface), and provid-
ing a common interface for interoperability between compilers. Although other
compiler interfaces exist with overlapping goals, to be discussed in Section 2, our
approach is unique in trying to bring together all of these elements.

Specification of Parameterized Variants for Auto-tuning Environment.

Transformation recipes describe a range of implementations, parameterized by
certain optimization variables. This range of implementations can be evaluated
by an external experiments engine that efficiently explores the resulting opti-
mization search space.

Application and Library Developer Interface. Transformation recipes al-
low application and library developers to interact directly with the compiler to
transform their code, including parallelization. Through the system organiza-
tion, the compiler manages the details of carrying out transformations correctly,
and generates code for a range of implementations that can be compared auto-
matically using auto-tuning technology.
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Common API for Compiler Transformation Framework. Transformation
recipes can also serve as a common interface for different compiler transforma-
tion frameworks. Numerous compiler transformation frameworks are capable of
specific optimizations such as loop unrolling or tiling, so with the appropriate
interface, the same recipe could be used by multiple compilers and their re-
sults compared. The same application could be tuned using different compiler
transformation frameworks, either successively or on independent pieces of code.

In our own research, the transformation recipe interface is part of a working
compiler system that uses an underlying polyhedral transformation and code
generation framework to support robust code generation within its domain of
applicability. This system has been used in a variety of ways: for kernel tun-
ing [11, 9, 40], for library tuning and generation, for tuning of key computations
from scientific applications, and for guiding parallel code generation for OpenMP
and CUDA.

In the remainder of the paper, we describe our own working compiler frame-
work and the transformation recipes it supports, as well as a current broad
activity across a number of compiler and auto-tuning research groups to de-
velop an infrastructure-independent common transformation API [1]. For the
latter, we would like to engage the LCPC community to participate so that this
representation can potentially interoperate with a large number of compiler in-
frastructures, thus moving our entire community in the direction of repeatable
experimental research and easier adoption of new ideas. Therefore, in addition
to presenting the design of our own compiler, we intend for this paper to initiate
dialog within our community on what is the most appropriate compiler interface
for supporting interoperability among compilers and user interaction for these
and related transformations.

2 Related Work

Commercial and research compilers have for a long time permitted users to
provide pragmas to augment the compiler’s knowledge, dating back to the vec-
torization era and possibly beforehand. Most notably, the existence of a similar
set of pragmas across different vendor compilers and a desire to standardize led
to the design of OpenMP. Existing such pragmas operate at a higher level that
presented here, and more often focus on augmenting compiler analysis rather
than directing transformation; e.g., the pragma C$IVDEP told Fortran vector-
izers that the dependences it found in a loop could be ignored. Today’s compilers
use pragmas to describe simple code transformations like loop unrolling, but do
not support the composition of several transformations.

Polyhedral loop transformation frameworks (e.g., [20, 15]) are known to sup-
port composition of multiple transformations. Internally, these frameworks ma-
nipulate mathematical representations of iteration spaces and loop bounds, and
expose interfaces that allow users (or compilers) to manipulate these low-level
mathematical representations or individual loop or statement manipulations.
Such interfaces are still too cumbersome to use when implementing a complex
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optimization strategy since descriptions of transformation sequences tend to be
lengthy. Our own compiler uses a polyhedral transformation framework, but the
transformation recipes specify high-level transformations that operate on a com-
plete loop nest; transformation algorithms translate from the recipes to the iter-
ation space manipulations for all statements enclosed in the loop nest [9, 10]. As
compared to other polyhedral frameworks, the transformation recipes described
in this paper target a higher level description of a composition of transforma-
tions that is suitable for savvy application developers in addition to compiler
developers; further, the interface can be broadly applicable to non-polyhedral
frameworks and polyhedral frameworks alike.

A number of interfaces to code transformation exist that are targeting a sim-
ilar level to the transformation recipes presented here. These include pragma-
oriented transformation specifications such as LoopTool [34], X language [13],
and Orio [16]. A related tool POET uses an XML-based description of code
transformation behavior to produce portable code transformation implementa-
tions [48], These tools all provide a general and flexible way to express a set
of transformations on a specific code fragment and several of these generate a
set of alternative implementations to support auto-tuning. Looking across the
tools, the set of supported transformations is different, and ours is neither a
subset or superset of other systems. Some distinguishing characteristics of our
supported transformations include the OpenMP and CUDA parallel code gener-
ation, specialization and index set splitting. Further, these tools support a core
set of transformations such as loop unrolling and loop tiling, and some support
extension to add new transformations. In summary, each tool has its unique
strengths and most suitable applications. Thus, we expect that the existence
of other interfaces at this level gives promise to potential for interoperability
between tools.

Our transformation recipe is separate from the code, which has several bene-
fits: (1) the code can remain architecture independent; (2) it is a concise descrip-
tion of how to transform a code segment that can be saved with a program and
used as documentation for how the code was transformed for a particular exe-
cution context; (3) implementations for different architectures can use separate
scripts, rather than requiring multiple sets of pragmas or multiple copies of the
code; and, (4) there is greater potential for reuse of scripts across different pieces
of similarly-structured code. It is also mechanical to translate between recipes
and pragmas in the code to support a pragma-based tool, and with appropriate
naming, also to translate from a set of pragmas to a recipe.

3 Rethinking the Developer and Compiler Workflows

This paper focuses on transformation recipes because they highlight require-
ments for: (1) programmer interaction; (2) optimization and code generation;
(3) compiler development; and, (4) tool interoperability. This section describes
how transformation recipes are used by application/library developers as well
as compiler developers to express and document an optimization recipe. Such
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recipes can be later fine-tuned by other developers or modified for different ar-
chitectures, while the original machine-independent code is maintained with the
program. As has been proven time and again, manually modifying a piece of a
highly-optimized code leads to machine-dependent code that is difficult to main-
tain and port. Additionally, using such a system, a compiler developer can now
focus on the performance aspect of transformations on the target code, instead
of the nitty-gritty details of implementation and how to generate correct code
with minimal overheads.

3.1 Application and Library Developer Workflow

Application and library developers spend a significant amount of time in man-
ual performance tuning. Many examples in the literature describe tuning using
widely available loop transformations and auto-tuning to find the right opti-
mization parameter values, for example, a computational fluid dynamics code
NEK5000 [41], quantum chemistry codes [19], Cholesky factorization of a sparse
matrix [17], and a sparse linear solver from LS-DYNA [24]. The tuning pro-
cess typically consists of several steps: identifying performance issues, deriving
optimization strategies, applying optimizations (code transformations), and eval-
uating the performance of the optimized code. This process is repeated several
times until performance is satisfactory or no more profitable optimizations can
be applied. Self-tuning libraries such as ATLAS and FFTW automate the code
generation step and the search for the best performing code version. Application
developers, however, still tend to apply optimizations by hand, an error-prone
and time-consuming process.

As a contemporary example of this process, in [47], Wolfe writes about tuning
a simple single-precision matrix multiplication kernel on a NVIDIA GeForce
GTX 280. Wolfe presents several versions of the matmul code obtained by using
code transformations such as loop permutation, loop strip mine and loop unroll,
and caching data in local memory. Performance ranges from 1.7 to 208 GFLOPs
depending on the number of threads per block (strip size), the loop(s) unrolled
and unroll sizes, and the amount of data cached in local memory. Summarizing
the article, Wolfe writes “Matmul is just one simple example here, three loops,
three matrices, lots of parallelism, and yet I put in several days of work to get
this seven line loop optimized for GPU.”

All seven versions of matmul in [47] can be derived with a combination of
loop permutation, strip mine and unroll, and data copy optimization. Each com-
bination can be expressed as a transformation recipe. The ability to express a
composition of transformations as a transformation recipe allows users to spec-
ify complex optimization strategies and experiment with a large number of code
versions and optimization parameter values.

Figure 1 illustrates how application or library developers may interact with
tools to automate the code transformation and code generation steps.
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Fig. 1. Application and library developer workflow.

3.2 Compiler Developer Workflow

Traditional compilers often rely on a rigid transformation strategy that applies
a fixed sequence of optimizations. [12, 6] have shown that by searching for op-
timization sequences compilers can achieve 15 to 25% better performance than
human-designed fixed-sequence originally used in these compilers. Various per-
formance libraries such as ATLAS [42] and FFTW [14] use custom optimization
strategies to achieve significant performance gain over leading-edge compilers.

However, a key challenge to loop nest optimization is that it is difficult to ex-
press and compose a sequence of loop transformations. Transformation recipes
provide a mechanism to describe an optimization strategy that can be used
by compiler decision algorithms. Moreover, auto-tuning compilers can propose
multiple code variants representing different optimization strategies that can be
compared empirically. In [11], a compiler decision algorithm generates sequences
of loop transformations based on data reuse available in applications. Such a
transformation sequence is not fixed during the compiler design but is com-
putation dependent, and generates different variants if static analysis cannot
determine which optimization strategy is better.

As shown in Figure 2, the first step is to derive alternative code variants,
where a decision algorithm such as [28, 44, 11] can be used to derive a sequence
of code transformations that corresponds to a transformed version of the orig-
inal code. This sequence of transformations is represented as a transformation
recipe. Multiple code variants can be generated if necessary. Optionally, each
transformation recipe can contain unbound parameters. In this case, a search
engine can be used to find the best parameter values that are not determined
statically by the decision algorithm. In the next step, the transformation recipe
combined with bound parameters are given to a transformation and code gen-
eration framework to generate the transformed code.

This compiler organization enables compiler designers to prototype optimiza-
tion algorithms in a convenient way. We envision that compiler designers can
experiment with different ideas and check the performance results with the help
of the transformation recipe and an underlying auto-tuning environment.
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Fig. 2. Compiler Developer Workflow

4 Transformation Recipe Description

In this section we discuss the requirements of a high-level interface representing
transformation recipes. We then present a set of transformations and their input
and output parameters. Finally we illustrate the use of transformation recipes
with a simple code example, a recipe and the corresponding output (transformed)
code generated by our compiler system.

The key requirements of a high-level interface for transformation recipes in
an auto-tuning environment are:

– a level of abstraction suitable to both compilers and application developers;
– a mechanism for naming language constructs;
– a mechanism to define transformations, such as transformation rules from

the X language [13];
– support for empirical search with tunable optimization parameters.

High-level interface. A transformation recipe expresses an optimization
strategy as a sequence of composable transformations. Each transformation has
a set of input and output parameters. Input parameters are: (1) language con-
structs such as statements, loops and array references that are present in the
code before the transformation is applied; (2) optimization parameters such as
tile size and unroll factors, which can be integer values or unbound parameters to
be instantiated during empirical search. Output parameters are specifiers to new
language constructs resulting from the code transformation. Output parameters
allow subsequent transformations in a transformation recipe to refer to these
new constructs.

Representation of language constructs. A common interface to trans-
formation tools or compilers requires a mechanism for naming language con-
structs such as loops, statements, and array references. Under the DOE SciDAC
PERI project, Quinlan and Liao [2] have designed a representation based on ab-
stract handles to language constructs, to support interoperability between com-
piler and tools. Abstract handles represent references to language constructs
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in source code and optimization phases, and allow language constructs to be
specified in multiple formats, including:

– Source file position information including path, filename, line and column
number as in GNU standard source position [3].

– Global or local numbering of specified language construct in source file.
– Global or local names of constructs.
– Language-specific naming mechanisms.

Interoperability is achieved by writing out abstract handles as strings and read-
ing them with other tools to build the equivalent abstract handle. For the dis-
cussion in this paper we assume that language constructs are identified using
the abstract handle mechanism in [2]. However, for simplicity of presentation,
we use labels to identify loops and statements throughout the paper.

Transformations. The set of transformations listed in this section was col-
lected from transformations frequently used for optimizing kernels and key com-
putations of scientific applications as part of our auto-tuning work, and trans-
formations supported by two state-of-the-art transformation tools, CHiLL [9,
10] and POET [48]. We do not include all transformations supported by these
frameworks, nor all transformations in the literature. The transformation recipe
interface is an open project, and new transformations can be added as needed.
Table 4 shows a set of transformations and their input and output parameters.
The fourth column provides a short description of each transformation.

Transformation Input Params Output Params Description

permute l1 . . . ln permute loops to new order l1 . . . ln
stripmine l, ssz sl strip mine l by ssz
tile l, tsz tl tile l by tsz
unroll l, usz unroll l by usz
unroll & jam l, usz unroll l and recursively fuse inner loops
fuse l1, l2 fl fuse l1 and l2
distribute l, stmt list dl distribute statements in list into new loop dl
split l, cond exp sl split index set of l given conditional expression
shift l, offset shift induction variable of l by offset
scale l, f scale induction variable of l by factor f

data copy
a, l, ta copy data referenced by a within l to ta and replace

references to a within l with references to ta

scalar repl
a, l, ts copy data referenced by a to scalar s and replace

references a within l with references to s
stmt split stmt, v stmt list split operations on variable v into separate statements

Table 1. Transformations.

The transformations in Table 4 are included in the common transformation
interface being developed by the PERI auto-tuning team. This common interface
will allow developers to use the same transformation recipe with PERI compil-
ers and tools, including CHiLL and POET. POET supports all transformations
listed, and CHiLL supports most transformations (exceptions are scalar replace-
ment and statement spliting). CHiLL also supports specialization and directives
for OpenMP and CUDA code generation (to be discussed next).
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5 Example Applications of this Tool

This compiler framework has been applied to the challenge of tuning a vari-
ety of code examples. We have used transformation recipes extensively to tune
performance of computational kernels, generate libraries, tune applications, and
generate optimized parallel (OpenMP and CUDA) code. This section presents
highlights of this work.

5.1 Kernel Tuning

We use LU factorization to demonstrate a very complex sequence of transfor-
mations that can be expressed using transformation recipes. From data reuse
analysis, a compiler decision algorithm [9] can derive a transformation sequence
very similar to the optimization strategy in LAPACK [7]. Previously such a
strategy could only be generated by a domain expert and no compiler-optimized
code could approach the performance of manually-tuned versions.

Figure 3 shows the original LU code and a transformation recipe [9, 10]. First,
loop J is tiled and the loops inside the tile controlling loop can be split. This
results in separating an imperfect loop nest (a mini-LU) from a perfect loop
nest with the heuristic that a perfectly nested loop renders more optimization
opportunities. Next, the perfect loop nest is split so that one loop nest has non-
overlapping array accesses (a GEMM kernel) and the other has overlapping array
accesses (a TRSM kernel). The goal is to expose more optimization opportunities
in a perfect loop nest with non-overlapping data accesses. Then, each sub loop
nest can be independently analyzed and further transformed according to its
data reuse and data dependence patterns. Figure 3(c) shows the code generated
from the transformation recipe in (b) with the best parameter values found on
the Intel Pentium M. Figure 4 shows the performance of the final code, which
achieves an average speedup of 16.29x over the native compiler.

This example shows how transformation recipes can facilitate automatic gen-
eration of highly optimized code. In [11], we combine a compiler locality opti-
mization algorithm for multi-level memory hierarchies with empirical tuning.
The models and compiler heuristics limit the search space to a few candidate
transformation recipes and a small range of parameter values. An empirical
search can then use heuristics and constraints on parameter values to find the
best implementation, searching just a few dozen points. The results for Matrix
Multiply and Jacobi Relaxation on two architectures, MIPS R10K and Sun Ul-
traSparc II, shows substantial performance improvements over native compilers
and performance comparable and sometimes better than manually-tuned code.

Moreover, transformation recipes allow us to leverage other tools to work
with compilers. In [40], Active Harmony, an auto-tuning tool supporting parallel
search of optimization parameters, is integrated with CHiLL to generate alter-
native implementations of computational kernels and automatically select the
best-performing implementation. Performance results on three kernels, Matrix
Multiply, Triangular Solver and Jacobi Relaxation, are 1.4 to 3.6 times faster
than the native Intel compiler.
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DO K=1,N-1
DO I=K+1,N
A(I,K)=A(I,K)/A(K,K)
DO I=K+1,N
DO J=K+1,N
A(I,J)=A(I,J)-

A(I,K)*A(K,J)

(a) Original code

permute([1,2,3])
tile(1,3,TJ,1)
split(1,2,[L2≤L1-2])
permute(2,[1,2,4,3])
permute(1,[1,3,4,2])
split(1,2,[L2≥L1-1])
tile(3,2,TI1,3)
split(3,3,[L5≤L2-1])
tile(3,5,TK1,5)
tile(3,5,TJ1,7)
datacopy(3,4,[1],1)
datacopy(3,5,[2])
unroll(3,5,UI1)
unroll(3,7,UJ1)
datacopy(4,3,[1],1)
tile(1,4,TK2,3)
tile(1,3,TI2,5)
tile(1,5,TJ2,7)
datacopy(1,4,[1],1)
datacopy(1,5,[2])
unroll(1,5,UI2)
unroll(1,6,UJ2)

(b) Recipe

DO T2=2,N,64
DO T4=2,T2-64,256
DO T6=1,T4-1,256
DO T8=T6,MIN(T4-1,T6+255)
DO T10=T4,MIN(T2-2,T4+255)
P1(T8-T6+1,T10-T4+1)=A(T10,T8)

DO T8=T2,MIN(T2+56,N),8
DO T10=T8,MIN(N,T8+7)
DO T12=T6,MIN(T6+255,T4-1)
P2(T12-T6+1,T10-T8+1)=A(T12,T10)

DO T10=T4,MIN(T2-2,T4+255)
DO T12=T8,MIN(N,T8+7)
DO T14=T6,MIN(T6+255,T4-1)
A(T10,T12)=A(T10,T12)-P1(T14-T6+1,T10-T4+1)*P2(T14-T6+1,T12-T8+1)

DO T6=T4,MIN(T4+254,T2-3)
DO T8=T6+1,MIN(T4+255,T2-2)
P3(T6-T4+1,T8-(T4+1)+1)=A(T8,T6)

DO T6=T4+1,MIN(T4+255,T2-2)
DO T8=T2,MIN(N,T2+63)
DO T10=T4,T6-1
A(T6,T8)=A(T6,T8)-P3(T10-T4+1,T6-T4+2)*A(T10,T8)

DO T4=1,T2-65,256
DO T6=T2-1,N,256
DO T8=T4,MIN(T4+255,T2-2)
DO T10=T6,MIN(T6+255,N)
P4(T8-T4+1,T10-T6+1)=A(T10,T8)

DO T8=T2,MIN(T2+56,N),8
DO T10=T8,MIN(N,T8+7)
DO T12=T4,MIN(T4+255,T2-2)
P5(T12-T4+1,T10-T8+1)=A(T12,T10)

DO T10=T6,MIN(T6+255,N)
DO T12=T8,MIN(N,T8+7)
DO T14=T4,MIN(T2-2,T4+255)
A(T10,T12)=A(T10,T12)-P4(T14-T4+1,T10-T6+1)*P5(T14-T4+1,T12-T8+1)

DO T4=T2-1,MIN(N-1,T2+62)
DO T8=T4+1,N
A(T8,T4)=A(T8,T4)/A(T4,T4)

DO T6=T4+1,MIN(N,T2+63)
DO T8=T4+1,N
A(T8,T6)=A(T8,T6)-A(T8,T4)*A(T4,T6)

(c) Generated code from (b) with bound parameters

Fig. 3. LU Factorization code and transformation recipe

5.2 Library and Application Tuning

We have used transformation recipes to generate a library of optimized routines
for Nek5000 [4], where the core computation is small, highly rectangular matrix-
matrix multiply. While vendor BLAS routines achieve very high performance
for large square matrices, their optimization strategies are not suitable for small
rectangular matrices. Further, an optimized code version for a small matrix size
does not always perform the best for other small matrices [41]. To optimize for
multiple matrix shapes and sizes, we use specialization, where matrix sizes are
fixed to the eight most frequent sizes that comprise about 74% of the matrix
multiply computation time in Nek5000. We then use CHiLL’s transformation
recipes to specify constant values for the matrix sizes. Figure 5(a) shows an
example recipe used to specialize the small matrix multiply code in (b). For the
three loop bounds, constants are specified in the recipe with a known command.
Specialization allows CHiLL to generate more efficient code with fewer checks
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and the backend compiler to apply more aggressive optimizations. The eight
best performing variants selected for each of the eight matrix sizes have different
transformation parameter values. Finally, a wrapper provides the same interface
as the default function for NEK5000, and is combined with the eight optimized
matrix multiply routines into a library. Upon a call, the wrapper checks the
three input values and calls an optimized code version if there is a match. The
library is more than 2.3 times faster than the default code in Nek50000 for the
eight most frequent sizes, and up to 2.1X times faster than the hand-coded Goto
BLAS linear algebra library.

permute([1,2,3])
known(M=N=K=10)
unroll(1,1,u1)
unroll(1,2,u2)
unroll(1,3,u3)

(a) loop order i,j,k

do 10, i=1,M
do 20, j=1,N

s0: c(i,j) = 0.0d0
do 30, k=1,K

s1: c(i,j) = c(i,j) + a(i,k)*b(k,j)
30 continue
20 continue
10 continue

(b) original.f

Fig. 5. Example of a CHiLL script and a specialized matrix multiply code.

With collaborators, we also have recent experiences and results applying this
framework to other applications SMG2000, and a quantum mechanical code with
stencil computations, which we plan to summarize in the final paper.

5.3 Optimizing and Generating Parallel Code

We are using the transformation recipes as a mechanism to generate parallel
OpenMP and CUDA code, taking the sequential code and transformation recipe
as input. The transformation recipes express the composition of parallelization
and a set of code transformations for these two different explicitly parallel pro-
gramming models. Thus, they can be used to support the CUDA code generation
examples from Section 3 and similar OpenMP examples. We add two constructs
to the transformation interface to support this parallel code generation.
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Transformation Input Params Output Params Description

OMPize l, sched, chksz parallelize l, with sched and chksz as variables
CUDAize l, TI, TJ kernnm parallelize l and create CUDA kernel kernnm

Table 2. Recipe entries for parallel code generation.

For OMPize, the sched parameter allows the script to customize the OpenMP
behavior for scheduling the distribution of loop iterations over threads (runtime,
static or dynamic), while chksz specifies the scheduling unit of loop iterations
to threads. The result of the code generation is insertion of the appropriate
OpenMP pragmas in either C or Fortran syntax, as requested by the user. This
set of parameters, along with the previously-described loop transformations,
allows the application developer or compiler to trade off the impact of locality,
multimedia extensions, parallelism granularities, and scheduling strategies.

The CUDAize transform parses out two loop levels and performs a tiling
of loop dimensions to a width of TI and TJ. The remaining inner procedure
is refactored into a GPU kernel function with the name kernnm. The proper
scaffolding code is then substituted in place of the original loop to properly set
up, copy input, make the kernel call and copy out results. This set of parameters
assists with the challenging problems of decomposition of parallelism into blocks
and threads, appropriate indexing given a specific decomposition and managing
a heterogeneous memory hierarchy including explicit copying. Different solutions
impact locality in registers within a thread, register usage, coalescing of global
memory accesses, and amount of parallelism needed to hide memory latency.

6 Summary and Conclusion

This paper focuses on transformation recipes, a high-level description of code
transformations that serve as an interface to describe the composition of complex
code transformations. Within the context of our own work on compiler-based
auto-tuning of kernels, libraries and key computations from high-end applica-
tions, this interface and the CHiLL transformation framework that supports it
have proven very useful at obtaining high levels of performance, sometimes com-
parable or even better than manually-tuned code. We discuss how this interface
is designed for both compiler developers and application/library developers. This
interface relates to many other tools developed by researchers in the LCPC com-
munity. We feel the time is right to converge on a common interface for these
transformations that would support interoperability across compiler frameworks.
The specific interface described here is just a starting point for these discussions.
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